This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713454007
Conversional studies towards taxoids from C_{19}-diterpenoid alkaloids by the BAC sequence
Hong Jiab; Qiao-Hong Chen ${ }^{\text {a }}$; Meng Zhu ${ }^{\text {a }}$; Feng-Peng Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry of Medicinal Natural Products, West College of Pharmacy, Sichuan University, Chengdu, China ${ }^{\text {b }}$ Drug Research Center, Guangzhou Medical College, Guangzhou, China

Online publication date: 08 November 2010

To cite this Article Ji, Hong, Chen, Qiao-Hong, Zhu, Meng and Wang, Feng-Peng(2010) 'Conversional studies towards taxoids from C_{19}-diterpenoid alkaloids by the BAC sequence', Journal of Asian Natural Products Research, 12: 11, 968 977
To link to this Article: DOI: 10.1080/10286020.2010.510796
URL: http://dx.doi.org/10.1080/10286020.2010.510796

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Conversional studies towards taxoids from C_{19}-diterpenoid alkaloids by the BAC sequence

Hong Ji ${ }^{\text {ab }}$, Qiao-Hong Chen ${ }^{\text {a }}$, Meng Zhu ${ }^{\text {a }}$ and Feng-Peng Wang ${ }^{\text {a }}$ *
${ }^{a}$ Department of Chemistry of Medicinal Natural Products, West College of Pharmacy, Sichuan University, Chengdu 610041, China; ${ }^{b}$ Drug Research Center, Guangzhou Medical College, Guangzhou 510182, China

(Received 3 May 2010; final version received 20 July 2010)

Abstract

The conversional synthesis of taxoids by the BAC sequence from the C_{19}-diterpenoid alkaloids, 14-acetyltalatisamine (1), yunaconitine (12), and 14-acetylchasmanine (19), was designed and explored. Two aconane-type diterpenes $\mathbf{1 7}$ and 28, the advanced intermediates for our conversional synthesis, were synthesized. The key steps include the rupture of the $\mathrm{C}(7)-\mathrm{C}(17)$ bond, the formation of imine, and the denitrogenation.

Keywords: taxoids; C_{19}-diterpenoid alkaloids; aconane-type diterpene; conversional synthesis

1. Introduction

The discovery of the anticancer drug paclitaxel $\left(\right.$ Taxol $\left.^{\circledR}\right)$ [1] is one of the major milestones in the medicinal natural products. It spurred an intense research on the biology and chemistry of both paclitaxel and its related taxoids. At present, the majority of the commercially available paclitaxel and docetaxel (Taxotere ${ }^{\circledR}$) are obtained via semi-synthetic processes starting from 10 -deacetyl baccatin III. Therefore, searching for an alternate source of these two important anticancer drugs is still in need. Considering abundant natural sources of certain C_{19}-diterpenoid alkaloids and our extensive research experience in the chemistry of diterpenoid alkaloids, we have sequentially envisioned four strategies towards the conversion from the C_{19}-diterpenoid alkaloids to taxoids [2]. After a decade-long and persistent exploration on this research program since 1994, we have successfully achieved a novel approach to the taxane

ABC core system from C_{19}-diterpenoid alkaloid deltaline [3]. Surprisingly, our journey along this conversional synthesis provided us with chance to find numerous intriguing reactions of C_{19}-diterpenoid alkaloids [2].

We have designed and explored an approach towards the taxoids from the C_{19}-diterpenoid alkaloids via a modification sequence from the ring B, ring A, to ring C (BAC sequence), which was planned with 14-acetyltalatisamine (1), yunaconitine (12), and 14-acetylchasmanine (19) as starting materials. During the course of this study, we have synthesized two aconane-type diterpenes 17 and 28, the advanced intermediates for our conversional synthesis. The synthesis of these two key intermediates and the exploitation on the BAC sequence are herein described.

2. Results and discussion

14-Acetyltalatisamine (1), a simpler diterpenoid alkaloid, was initially employed as

[^0]a starting material of our conversional synthesis of the taxoids through the BAC sequencing (Scheme 1). The 7,17-seco diterpenoid alkaloid $\mathbf{3}$ was prepared from $\mathbf{1}$ in 68% yield by the cleavage of the $\mathrm{C}(17)-\mathrm{C}(7)$ bond using the procedure that we have developed [4] followed by hydrogenation. Reaction of 3 with NBS [5-7] gave imine 4 in 28% yield and the by-products 5-7. It is indicated that the products of this type of reactions are highly dependent on the substituents of the substrates since we have quantitatively synthesized the imines from yunaconitine or its derivatives [5-7]. Unfortunately, oxidation of 4 with m-CPBA only generated the oxidative products $\mathbf{8}$ (21%) and $9(36 \%)$ instead of the desired nitrone 10. An attempt to cleave the $N-\mathrm{C}(19)$ bond of $\mathbf{8}$ and $\mathbf{9}$ by treating with HIO_{4} failed. We have also tried to directly
convert the imine 4 to the corresponding diterpene $\mathbf{1 1}$ through a one-pot reaction (m-CPBA-LTA)[8], but it is not successful.

We considered that the aldehyde group at C-19 from the breakage of the $N-\mathrm{C}(19)$ bond might be detrimental to the reaction and that the methoxyl group at C-6 in imine 15 might be able to trap the aldehyde group. As shown in Scheme 2, the 7,17seco diterpenoid alkaloid $\mathbf{1 3}$ was prepared from 12 using a seven-step reaction sequence that was reported by us [4]. The $\Delta^{7,8}$ double bond in $\mathbf{1 3}$ was subsequently saturated to avoid some unexpected reactions. The imine 15 was smoothly prepared from 14 in 65\% yield by reacting with NBS in HOAc. The characteristic imine signals at $\delta_{\mathrm{H}} 7.30 \mathrm{~s}$ and $\delta_{\mathrm{C}} 160.9 \mathrm{~d}$ in its NMR spectra can be assigned to $\mathrm{C}-19$ due to the presence of the HMBC correlations of H -

Scheme 1. Attempt to convert 14-acetyltalatisamine to taxoids via the BAC sequence.

Scheme 2. Attempt to convert yunaconitine to taxoids via the BAC sequence.

19 with C-4 ($\delta_{\mathrm{C}} 46.9 \mathrm{~s}$) and C-18 ($\delta_{\mathrm{C}} 70.2$ t), and of C-19 ($\delta_{\mathrm{C}} 160.9 \mathrm{~d}$) with H-3 (δ_{H} $4.97,1 \mathrm{H}, \mathrm{dd}, J=10.8,5.2 \mathrm{~Hz}$) (Table 1). These results suggested that the $N, 19-$ imine, rather than the $N, 17$-imine, could be favorably formed from the 7,17-seco-C 19 $^{-}$ diterpenoid alkaloids probably due to the steric effect. The nitrone $\mathbf{1 6}$ was obtained in 89% yield by treatment of $\mathbf{1 5}$ with m CPBA at room temperature. However, an attempt to break the $N-\mathrm{C}(19)$ bond of $\mathbf{1 6}$ with NaIO_{4} or LTA failed. Compound 16 was subsequently exposed to a molar excess of a solution of HIO_{4} in MeOH overnight at room temperature to furnish 17 and 18. These two products have negative response to Dragendorff's reagent. The NMR spectra of $\mathbf{1 7}$ exhibited the presence of a typical methyl ester group ($\delta_{\mathrm{H}} 3.69,3 \mathrm{H}, \mathrm{s} ; \delta_{\mathrm{C}} 168.1 \mathrm{~s}, 51.9 \mathrm{q}$) and a five-membered lactone moiety (δ_{C} 178.0 s and IR $1778 \mathrm{~cm}^{-1}$). The NMR spectra of $\mathbf{1 8}$ displayed the existence of a lactone moiety ($\delta_{\mathrm{C}} 168.2 \mathrm{~s}$) and a special methine group ($\delta_{\mathrm{H}} 5.62,1 \mathrm{H}$, br s, $\delta_{\mathrm{C}} 103.3$ d). Its IR spectrum exhibited absorbance for the nitro group ($1563-1372 \mathrm{~cm}^{-1}$).

We then chose 14 -acetylchasmanine 19, a simpler diterpenoid alkaloid relative to yunaconitine but with a methoxyl group at C-6, as the starting material to
observe the applicability of this approach (Scheme 3). According to the procedure described in the literature [4], 7,17-seco diterpenoid alkaloids 20 and 21 were obtained in 52 and 31% yield from 19. Hydrogenation of $\mathbf{2 0}$ followed by exposure to NBS in HOAc furnished imine 23 and iminium 24. Oxidation of imine $\mathbf{2 3}$ with m CPBA provided the desired nitrone 25 in 43% yield. During the subsequent denitrogenation by treating with HIO_{4}, we observed that an old bottle of $\mathrm{HIO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ appeared to be liquid led to the quantitative conversion of $\mathbf{2 5}$ to the expected ester 26. To avoid the generation of cycloether by the simultaneous reduction of the methyl ester and the γ-lactone, we tried to selectively reduce the methyl ester. However, NaBH_{4}-GDE only reduced the ester group at C-14 of $\mathbf{2 6}$ to give compound 27 . The expected product 28 could be obtained when an excess amount of NaBH_{4} was used in the presence of AlCl_{3}. Reduction of 26 with a stoichiometric amount of LiAlH_{4} afforded 28 in 51% yield.

In conclusion, a BAC-sequencing approach to the taxoids from three diterpenoid alkaloids was exploited. To this end, two advanced intermediates were synthesized, demonstrating the BCA

Table 1. 1D and 2D NMR spectral data of compound 15 in $\mathrm{CDCl}_{3}\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$).

No.	$\delta_{\text {C }}$	δ_{H} mult. (J in Hz)	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)
1	29.0 t	1.62 m	C-2, C-3, C-5, C-11
		1.73 m	C-2, C-3, C-5, C-11
2	27.1 t	1.44 m	C-1, C-3, C-11
		1.98 m	C-1, C-4, C-11
3	73.3 d	$4.97 \mathrm{dd}(J=10.8,5.2)$	C-2, C-4, C-18, C-19
4	46.9 s	-	-
5	45.7 d	$1.64 \mathrm{~d}(J=3.2)$	$\mathrm{C}-1, \mathrm{C}-3, \mathrm{C}-11$
6	79.9 d	3.73 br s	C-5, C-7, C-8, C-11, 6-OCH3
7	32.7 t	2.07 m	C-8, C-9
		2.18 m	C-9
8	28.9 d	1.76 m	C-6, C-7, C-9, C-16
9	45.4 d	2.38 m	C-7, C-8, C-10, C-11, C-12
10	44.4 d	2.36 m	C-9, C-11, C-12, C-13, C-14
11	36.1 s	- ${ }^{\text {- }}$	$-$
12	33.5 t	$1.28 \mathrm{dt}(J=14.6,5.2)$	C-10
		1.92 m	C-9, C-11
13	85.1 s	-	-
14	77.3 d	$5.22 \mathrm{~d}(J=4.4)$	C-8, C-10, C-13, C-16
15	46.8 t	1.43 m	C-7, C-8, C-9, C-13, C-16
		1.76 m	C-8, C-9, C-13, C-16
16	81.1 d	4.00 br s	$\mathrm{C}-8, \mathrm{C}-13, \mathrm{C}-14,16-\mathrm{OCH}_{3}$
17	59.5 t	$3.39 \mathrm{dd}(J=18.5,2.4)$	C-5, C-11
		4.16 dd ($J=18.5,2.4)$	C-5, C-11
18	70.2 t	$3.31 \mathrm{ABq}(J=9.6)$	$\mathrm{C}-3, \mathrm{C}-5,18-\mathrm{OCH}_{3}$
		$3.58 \mathrm{ABq}(J=10.0)$	$\mathrm{C}-3, \mathrm{C}-5,18-\mathrm{OCH}_{3}$
19	160.9 d	7.30 s	C-4, C-18
6-OMe	59.2 q	3.19 s	C-6
$16-\mathrm{OMe}$	58.4 q	3.35 s	C-16
$18-\mathrm{OMe}$	55.9 q	3.27 s	C-18
3-OAc	170.8 s	-	-
	20.9 q	2.05 s	3-OCO
13-OAc	170.7 s	-	-
	22.0 q	2.11 s	13-OCO
14-OAc	169.8 s	-	-
	21.2 q	2.05 s	14-OCO

sequence to be a potential route for the conversion of C_{19}-diterpenoid alkaloids to the taxoids. It has been reported that the oxidation of the nitrones (e.g. 16, 25) with HIO_{4} could generate the corresponding nitro compounds $[6,7,9]$, and that nitro compounds could be converted to the corresponding carboxylic acids or esters under some oxidants [10,11]. However, for the first time, it was observed that the treatment of the nitrones with HIO_{4} could directly produce the corresponding carboxylic esters.

3. Experimental

3.1 General experimental procedures

Melting points were determined on a Kofler block (uncorrected). IR spectra were recorded on a Nicolet FT-IR 200 SXV spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a Varian INOVA 400/54 or a Bruker AC-E 200 spectrometer in CDCl_{3} with TMS as the internal standard. Mass spectra were obtained on a Finnigan LCQ and Micromass Auto Spec Ultima-Tof spectrometer.

Scheme 3. Attempt to convert 14-chasmanine to taxoids via the BAC sequence.

Silica gel GF_{254} and $\mathrm{H}(10-40 \mu \mathrm{~m}$; Qingdao Sea Chemical Factory, Qingdao, China) were used for TLC, Chromatotron, and column chromatography.

3.2 Compound 2

To a solution of compound $\mathbf{1}(1.34 \mathrm{~g}$, 2.89 mmol) in anhydrous benzene (60 ml) was added $\mathrm{SOCl}_{2}(3 \mathrm{ml})$, and the subsequent solution was stirred at room temperature overnight. The removal of the solvent gave a residue, to which NaBH_{4} $(1.12 \mathrm{~g})$ in THF (60 ml) was added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 12 h . After the removal of the solvents, the residue was diluted with water $(90 \mathrm{ml})$ and extracted with chloroform $(70 \mathrm{ml} \times 3)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvents were removed. The residue was subjected to column chromatography (silica gel $\mathrm{H}, 30 \mathrm{~g}$) eluted with cyclohexaneacetone (12:1) to afford 2 (a white
amorphous powder, $756 \mathrm{mg}, 68 \%$). The structure of $\mathbf{2}$ was identified by comparison with the authentic sample [TLC: cyclohex-ane-acetone (6:1), $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (99:1), CHCl_{3}-acetone (12:1)].

3.3 Compound 3

To a solution of $2(500 \mathrm{mg}, 1.1 \mathrm{mmol})$ in $95 \% \mathrm{EtOH}(15 \mathrm{ml})$ was added $10 \% \mathrm{Pd} / \mathrm{C}$ $(20 \mathrm{mg})$, and the solution was stirred under the atmosphere of hydrogen at room temperature for 1 h . After filtration, the filtrate was concentrated to give $\mathbf{3}$ (a white amorphous powder, $500 \mathrm{mg}, 100 \%$), which was identified by comparison with the authentic sample [TLC: cyclohexaneacetone (6:1), $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (99:1), CHCl_{3}-acetone (12:1)].

3.4 Compounds 4-7

To a solution of $3(350 \mathrm{~g}, 0.78 \mathrm{mmol})$ in HOAc (12 ml) was added NBS (1.11 g ,
6.23 mmol), and the solution was allowed to stand at room temperature for 1 h prior to being poured into ice water (5 ml). The mixture was basified with conc. $\mathrm{NH}_{4} \mathrm{OH}$ solution to pH 9 and extracted with chloroform $(15 \mathrm{ml} \times 3)$. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Column chromatography (silica gel $\mathrm{H}, 10 \mathrm{~g}$) of the residue, using cyclohexane-acetone (5:1) as the eluent, afforded $\mathbf{4}$ (a white amorphous powder, $91 \mathrm{mg}, 28 \%$), 5 (a white amorphous powder, $30 \mathrm{mg}, 9 \%$), $\mathbf{6}$ (a white amorphous powder, $40 \mathrm{mg}, 11 \%$), and 7 (a white amorphous powder, $98 \mathrm{mg}, 30 \%$). Compound 4: $\mathrm{mp} \quad 81-83^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+4.44$ $\left(c=3.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $(\mathrm{KBr}) \nu_{\text {max }}: 2928$, 1734, 1654, 1252, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.26,3.30$, 3.36 (each 3H, s, $3 \times$ OMe), 3.70, 3.81 (each $\left.1 \mathrm{H}, \mathrm{ABq}, J=19.2 \mathrm{~Hz}, \mathrm{H}_{2}-18\right), 4.67(1 \mathrm{H}, \mathrm{t}$, $J=4.8 \mathrm{~Hz}, \mathrm{H}-14 \beta), 7.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-19)$; ${ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESIMS m / z (\%): $420\left([M+H]^{+}, 100\right)$. Compound 5: mp $137-139^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}$ $-1.00\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $(\mathrm{KBr}) \nu_{\text {max }}$: 3440, 2930, 1713, 1649, 1254, $1098 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 2.04$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 3.24, 3.32, 3.32 (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}$), 4.65 $(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz}, \mathrm{H}-14 \beta) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; HR-ESI-MS: $\mathrm{m} / \mathrm{z} 436.2697 \quad[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~N}, 436.2699$). Compound 6: mp $69-71^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-2.3\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $(\mathrm{KBr}) \nu_{\max }: 2931,1734,1634,1253$, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 1.10$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.03(3 \mathrm{H}, \mathrm{s}$, OAc), 3.24, 3.30, 3.30 (each 3 H , s, $3 \times \mathrm{OMe}$), $3.44,3.67$ (each $1 \mathrm{H}, \mathrm{ABq}$, $\left.J=10.0 \mathrm{~Hz}, \quad \mathrm{H}_{2}-18\right), \quad 4.63(1 \mathrm{H}, \quad \mathrm{t}$, $J=4.0 \mathrm{~Hz}, \mathrm{H}-14 \beta) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m / z (\%): 478 (M + Na, 100); HR-ESI-MS: $m / z 464.3020$ $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{~N}$, 464.3012). Compound 7: mp $142-144^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-13.3\left(c=4.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr) $\nu_{\text {max }}: 2934,1730,1649,1456,1368,1255$, $1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 1.54$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.04(3 \mathrm{H}, \mathrm{s}$, OAc), 3.24, 3.32, 3.41 (each 3 H , s,
$3 \times \mathrm{OMe}), 4.50(2 \mathrm{H}, \mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}-17\right), 4.63(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{H}-14 \beta)$, $9.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-19) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m / z (\%): 449 $[\mathrm{M}+\mathrm{H}]^{+}(26), 448\left(\mathrm{M}^{+}, 100\right)$; HR-ESIMS: m/z $448.3068[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{~N}, 448.3063$).

3.5 Compounds 8 and 9

To a solution of $4(103 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ was added $m-\mathrm{CPBA}(127 \mathrm{mg}$, 0.74 mmol), and the solution was stirred at room temperature for 1 h . The reaction was quenched by the addition of $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ (9 ml) with stirring. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(5 \mathrm{ml} \times 3)$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was subjected to column chromatography (silica gel $\mathrm{H}, 3 \mathrm{~g}$) eluted with cyclohexane-acetone (6:1) to afford $\mathbf{8}$ (a white amorphous powder, 22 mg , 21%) and 9 (a white amorphous powder, $40 \mathrm{mg}, 36 \%$). Compound 8: mp 96-98 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-15.38\left(c=3.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{IR}(\mathrm{KBr})$ $\nu_{\text {max }}: 2929,1734,1648,1254,1097 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, 3.25, 3.31, 3.35 (each 3H, s, $3 \times \mathrm{OMe}$), 3.88 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19 \beta$), $4.64(1 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}, \mathrm{H}-$ 14β); ${ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m/z (\%): $436\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, $420\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 18\right)$; HR-ESI-MS: m / z $436.2713[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~N}$, 436.2699). Compound 9: mp $100-102^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-28.9\left(c=3.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr) $\nu_{\text {max }}: 3441,2929,1735,1637,1369,1253$, $1099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 2.05$ (3H, s, OAc), 3.25, 3.31, 3.31 (each $3 \mathrm{H}, \mathrm{s}$, $3 \times \mathrm{OMe}), 4.65(1 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}, \mathrm{H}-14 \beta)$; ${ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESIMS m/z (\%): $452\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 420$ $\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 32\right)$, HR-ESI-MS: m / z $452.2663[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{~N}$ 452.2648).

3.6 Compound 14

This compound was prepared from 13 in quantitative yield employing a similar
Table 2. ${ }^{13} \mathrm{C}$ NMR spectral data of compounds $\mathbf{4 - 9}, \mathbf{1 4}, \mathbf{1 6}-\mathbf{1 8}$, and $\mathbf{2 0}-\mathbf{2 8}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

No.	4	5	6	7	8	9	14	16	17	18	20	21	22	23	24	25	26	27	28
1	90.7	90.0	90.1	88.1	88.4	89.3	28.0	26.5	23.3	25.3	89.4	92.9	90.2	90.9	88.3	89.1	82.2	83.1	83.4
2	26.9	27.0	27.1	27.3	27.0	27.3	28.8	29.0	29.2	30.5	25.9	25.3	22.4	27.4	27.4	27.4	24.6	24.6	24.2
3	30.5	32.6	33.0	31.3	30.5	32.3	74.3	73.2	70.9	71.0	36.2	34.0	35.8	31.0	33.3	32.5	29.3	36.9	36.8
4	43.2	41.9	42.1	43.5	42.6	43.5	43.2	47.2	44.9	45.0	39.7	41.2	41.7	42.2	42.5	43.5	49.2	52.1	52.2
5	34.1	34.3	34.4	34.1	33.6	34.3	47.2	45.5	45.9	50.4	41.4	43.1	41.9	34.2	34.0	34.0	35.5	37.6	37.6
6	24.1	24.1	24.3	24.1	24.6	24.0	81.2	79.6	80.4	77.8	84.3	84.4	85.2	81.6	80.6	81.1	80.9	82.1	83.1
7	21.2	20.9	20.9	21.4	21.2	21.0	33.4	32.4	31.4	32.9	127.5	123.7	32.6	24.6	23.9	24.2	20.7	20.7	21.7
8	44.5	44.5	44.6	44.3	43.6	44.6	29.2	28.6	27.5	29.3	133.1	135.4	28.7	44.8	44.5	44.9	44.7	45.5	46.4
9	43.2	43.1	43.3	42.3	43.4	43.5	46.2	45.2	45.5	45.5	44.3	47.1	41.8	43.9	43.7	44.0	43.0	45.5	45.3
10	44.6	44.6	44.7	44.5	45.0	44.6	43.7	44.5	42.9	43.4	44.0	43.3	45.7	46.5	45.0	46.4	48.6	48.6	48.7
11	44.6	47.0	46.9	43.5	40.3	46.9	38.2	38.2	53.4	45.0	43.0	44.3	44.1	43.8	46.1	44.1	52.0	49.2	40.0
12	28.5	28.5	28.5	28.4	28.4	28.6	33.7	33.2	31.5	37.0	29.9	33.7	27.2	28.8	28.5	28.7	26.3	26.0	25.9
13	29.1	29.0	29.0	28.8	28.9	29.0	85.5	84.5	85.2	85.2	36.4	38.9	37.7	29.4	28.6	29.1	28.2	27.2	27.1
14	77.1	76.9	76.9	76.5	77.1	76.8	77.7	76.7	75.9	76.6	78.1	73.3	76.0	77.4	76.1	76.8	75.4	75.9	76.0
15	34.3	34.0	33.9	34.2	35.4	33.9	46.5	45.7	35.6	43.0	37.4	132.2	38.6	34.4	31.1	34.0	36.8	28.5	28.5
16	81.5	81.5	81.5	80.9	81.5	81.3	81.3	80.9	80.7	82.0	80.4	130.5	78.9	81.6	80.3	80.5	80.8	81.0	79.6
17	51.5	42.4	47.4	57.1	49.5	49.7	53.7	66.1	168.1	103.3	52.1	52.8	50.1	52.8	56.1	60.0	173.8	173.9	64.9
18	76.6	74.7	75.4	73.6	76.8	74.5	72.8	69.5	73.0	70.4	79.7	81.4	80.1	76.9	73.7	76.2	77.5	77.5	80.2
19	164.8	174.9	171.3	179.6	80.8	166.4	52.1	135.0	178.0	168.2	56.3	52.4	56.6	162.7	179.0	137.9	176.2	176.5	177.2
21			41.4	51.9			50.4				52.0	50.9	51.2		53.0				
22			11.7	14.1			12.2				12.1	11.9	11.9		13.6				
1-OMe	56.5	56.5	56.5	56.5	56.5	56.6					55.8	56.8	56.0	55.9	55.6	56.0	56.5	56.7	56.7
6-OMe							55.1	56.2		56.7	57.4	57.2	57.2	57.1	56.3	56.7			
$16-\mathrm{OMe}$	56.9	57.0	57.0	57.0	57.0	56.9	58.3	58.5	58.3	58.3	56.3		56.3	56.4	56.7	56.4	57.4	57.3	58.1
$18-\mathrm{OMe}$	59.4	59.3	59.2	59.4	59.3	59.4	58.9	59.2	59.2	59.3	58.9	59.2	59.4	59.4	59.1	59.3	59.3	59.3	59.4
OCO	171.6	171.7	171.6	171.4	171.6	171.5	$\begin{aligned} & 170.8 \\ & 170.8 \\ & 170.2 \end{aligned}$				171.1	171.3	171.4	171.7	171.7	171.5	171.5		
COCH_{3}	21.3	21.2	21.2	21.0	21.2	21.2	$\begin{aligned} & 22.1, \\ & 21.3 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 21.9 \\ & 21.1 \\ & 20.9 \end{aligned}$	$\begin{gathered} 21.6 \\ 21.2 \\ 21.0 \end{gathered}$	$\begin{aligned} & 22.1, \\ & 21.1, \\ & 20.4 \end{aligned}$	21.3	21.2	21.0	21.2	20.8	21.1	21.1		
COOCH_{3}									51.9								51.6	51.6	

procedure as described for the synthesis of 3. Compound 14: a white amorphous powder; mp $78-80^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-15.9$ ($c=4.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr) $\nu_{\text {max }}: 1737$, 1450, 1369, $1250 \mathrm{~cm}^{-1} ; \quad{ }^{1} \mathrm{H} \quad$ NMR $(200 \mathrm{MHz}) \delta 0.95(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$), 1.99, 1.99, 2.04 (each 3 H , s, $3 \times \mathrm{OAc}$), $3.13,3.20,3.28$ (each $3 \mathrm{H}, \mathrm{s}$, $3 \times \mathrm{OMe}), 3.76(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{H}-16 \alpha), 3.92$ $(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{H}-6 \beta), 4.92(1 \mathrm{H}, \mathrm{dd}$, $J=11.6,6.8 \mathrm{~Hz}, \mathrm{H}-3 \beta), 5.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-$ 14β) $;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; HR-ESI-MS: $m / z 566.3318[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{ON}_{9}, 566.3329$).

3.7 Compound 15

Employing a similar procedure as described for the synthesis of compounds 4-7, imine 15 ($384 \mathrm{mg}, 65 \%$) was prepared from 14. Imine 15: a white amorphous powder; mp $204-205^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+8.2$ $\left(c=3.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $(\mathrm{KBr}) \nu_{\text {max }}: 1773$, 1705, 1247, $1192 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data, see Table 1; HR-ESI-MS: $\mathrm{m} / \mathrm{z} 558.6250 \quad[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{9} \mathrm{NNa}, 558.6246$).

3.8 Compound 16

This compound (95 mg) was prepared from 15 in 89% yield by a similar procedure as described for the synthesis of compounds $\mathbf{8}$ and 9 . Compound 16: mp $184-186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 2.01$, 2.01, 2.07 (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OAc}$), 3.22, 3.22 , 3.32 (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}$), 3.77 (1 H , br s, H-6 $)$, 3.89 (1 H , br s, $\mathrm{H}-16 \alpha$), $4.39(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-17), 4.94(1 \mathrm{H}$, dd, $J=10.8,4.8 \mathrm{~Hz}, \mathrm{H}-3 \beta), 5.20(1 \mathrm{H}, \mathrm{d}$, $J=2.8 \mathrm{~Hz}, \mathrm{H}-14 \beta), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19)$; ${ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESIMS m / z (\%): 574 ($\mathrm{M}^{+}+\mathrm{Na}, 100$); HR-ESI-MS: $m / z 574.2609[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{O}_{10} \mathrm{NNa}, 574.2623$).

3.9 Compounds 17 and 18

To a solution of $\mathbf{1 6}(175 \mathrm{mg}, 0.32 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{ml})$ was added $\mathrm{HIO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
($580 \mathrm{mg}, 2.55 \mathrm{mmol}$), and the mixture was stirred at room temperature for 12 h . After the removal of methanol, the residue was diluted with water and extracted with ethyl acetate. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel $\mathrm{H}, 5 \mathrm{~g}$) eluted with cyclohexane-acetone (5:1) to afford 17 (a white amorphous powder, 41 mg , 28%) and 18 (a white amorphous powder, $27 \mathrm{mg}, 18 \%$). Compound 17: mp 102$104^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+20.0\left(c=2.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $(\mathrm{KBr}) \nu_{\text {max }}: 2933,1778,1736,1608,1514$, 1460, 1258, $1099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 1.98,2.03,2.11$ (each 3 H , s, $3 \times \mathrm{OAc}$), 3.27, 3.32, 3.69 (each $3 \mathrm{H}, \mathrm{s}$, $3 \times \mathrm{OMe}), 3.89(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-6 \beta)$, 3. $98(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{H}-16 \alpha), 4.99$ ($1 \mathrm{H}, \mathrm{dd}, J=10.6,4.6 \mathrm{~Hz}, \mathrm{H}-3 \beta$), 5.18 $(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-14 \beta) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m/z (\%): $589\left(\mathrm{M}^{+}+\mathrm{Na}, 100\right)$; HR-ESI-MS: $\mathrm{m} / \mathrm{z} 589.5928[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{12} \mathrm{Na}, 589.5923$). Compound 18: $\mathrm{mp} 96-98^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}-15.4 \quad(c=2.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr) $\nu_{\text {max }}: 2928,1746$, $1733,1563,1458,1372,1243,1106 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 2.00,2.06,2.08$ (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OAc}$), 3.31, 3.36, 3.38 (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}), 3.84(1 \mathrm{H}, \mathrm{d}$, $J=5.6 \mathrm{~Hz}, \mathrm{H}-6 \beta), 3.92(1 \mathrm{H}, \mathrm{d}, ~ J=$ $4.0 \mathrm{~Hz}, \mathrm{H}-16 \alpha), 4.99(1 \mathrm{H}, \mathrm{dd}, J=10.6$, $4.8 \mathrm{~Hz}, \mathrm{H}-3 \beta), 5.57(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}, \mathrm{H}-$ $14 \beta), 5.62(1 \mathrm{H}$, br s, $\mathrm{H}-17) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m / z (\%): $620\left(\mathrm{M}^{+}+\mathrm{Na}, \quad 100\right), 589$ $\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}, 45\right) ;$ HR-ESI-MS: m / z $620.6059[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\left.\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{13} \mathrm{NNa}, 620.6064\right)$.

3.10 Compounds 20 and 21

Using a similar procedure as described for the synthesis of $\mathbf{2}$, olefin $\mathbf{2 0}$ (a white amorphous powder, $82 \mathrm{mg}, 52 \%$) and diene 21 (a white amorphous powder, 46 mg , 31%) were prepared from $\mathbf{1 9}$. Olefin 20: mp $88-90^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+41.6\left(c=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;

IR (KBr) $\nu_{\text {max }}$: 2930, 1736, 1635, 1458, 1367, 1249, $1094 \mathrm{~cm}^{-1} ; \quad{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 0.96(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$), $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.26,3.30$, 3.31 (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}$), $4.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $16 \alpha), 4.77(1 \mathrm{H}, \mathrm{t}, J=4.0 \mathrm{~Hz}, \mathrm{H}-14 \beta), 5.51$ $(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, \mathrm{H}-7) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; HR-ESI-MS: m / z $478.3174 \quad[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{~N}, 478.3169$). Diene 21: mp 99$101^{\circ} \mathrm{C}$; IR (KBr) $\nu_{\text {max }}: 2934,1734,1647$, 1454, 1248, $1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 0.96(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.25,3.29$, 3.29 (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}), 4.80(1 \mathrm{H}, \mathrm{t}$, $J=4.0 \mathrm{~Hz}, \quad \mathrm{H}-14 \beta), \quad 5.43 \quad(1 \mathrm{H}, \quad \mathrm{d}$, $J=6.8 \mathrm{~Hz}, \mathrm{H}-7), 5.88(1 \mathrm{H}, \mathrm{t}, J=9.2 \mathrm{~Hz}$, $\mathrm{H}-16), 6.24(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-15) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2. ESI-MS: $\mathrm{m} / \mathrm{z} 446\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HR-ESI-MS: m / z $446.2911[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{ON}_{5}$, 446.2906).

3.11 Compound 22

This compound was prepared from 20 in quantitative yield by a similar procedure as described for the synthesis of $\mathbf{3}$. A white amorphous power (60 mg); mp $55-57^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}-30.0\left(c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr) $\nu_{\text {max }}: 2924,1735,1458,1367,1254$, $1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) \delta 0.99$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.05(3 \mathrm{H}$, s, OAc), 3.23, 3.24, 3.28, 3.32 (each 3 H , s, $4 \times \mathrm{OMe}), 3.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6 \beta), 4.70(1 \mathrm{H}$, $\mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{H}-14 \beta) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m / z (\%): 480 $\left([\mathrm{M}+\mathrm{H}]^{+}, \quad 100\right)$. HR-ESI-MS: m / z $480.3320 \quad[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{~N}, 480.3325\right)$.

3.12 Compounds 23 and 24

These two compounds were prepared from 22 according to a similar procedure as described for the synthesis of compounds 4-7. Compound 23: a white amorphous powder; $104 \mathrm{mg}, 38 \%$; mp $59-61^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$ $-1.29\left(c=1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $(\mathrm{KBr}) \nu_{\text {max }}:$

2926, 1730, 1642, 1254, $1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.17$, $3.27,3.30,3.35$ (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OMe}$), $3.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6 \beta), 3.78,3.91$ (each 1 H , dd, $\left.J=17.6,2.0 \mathrm{~Hz}, \mathrm{H}_{2}-17\right), 4.74(1 \mathrm{H}, \mathrm{t}$, $J=4.4 \mathrm{~Hz}, \mathrm{H}-14 \beta), 7.57(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS $\mathrm{m} / \mathrm{z}(\%): 450\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HR-ESIMS: $m / z 450.2856[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{12}, 450.2850$). Compound 24: a white amorphous powder; $93 \mathrm{mg}, 32 \%$; mp $87-89^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+0.54\left(c=1.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr) $\nu_{\text {max }}: 2923,1725,1640,1455$, 1369, 1254, $1094 \mathrm{~cm}^{-1} ; \quad{ }^{1} \mathrm{H} \quad$ NMR $(400 \mathrm{MHz}) \delta 1.52(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$), $2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.21,3.27$, 3.34, 3.38 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OMe}$), 3.70, 3.78 (each $1 \mathrm{H}, \mathrm{ABq}, J=9.6 \mathrm{~Hz}, \mathrm{H}_{2}-17$), $3.64,3.97$ (each $1 \mathrm{H}, \mathrm{ABq}, J=16.0 \mathrm{~Hz}, \mathrm{H}_{2}{ }^{-}$ 18), 3.81 (1 H , br s, $\mathrm{H}-6 \beta$), 4.09, 4.40 (each $\left.1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-21\right), 4.68(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz}, \mathrm{H}-$ $14 \beta), 10.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m / z (\%): $479\left([\mathrm{M}+\mathrm{H}]^{+}, 30\right), 478\left(\mathrm{M}^{+}, 100\right)$; HR-ESI-MS: m/z $478.3152[\mathrm{M}]^{+}$(calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{~N}, 478.3169\right)$.

3.13 Compound 25

This compound was prepared from 23 in 43% yield by a similar procedure as described for the synthesis of $\mathbf{8}$ and $\mathbf{9}$. Compound 25: a white amorphous powder, $48 \mathrm{mg} ; \mathrm{mp} \quad 99-101^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}-48.5$ $\left(c=2.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr) $\nu_{\text {max }}: 2928$, 1730, 1637, 1457, 1371, 1254, $1097 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $3.23,3.26,3.31,3.34$ (each 3 H , s, $4 \times \mathrm{OMe}), 3.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6 \beta), 3.80$, 4.14 (each $1 \mathrm{H}, \mathrm{ABq}, J=15.6 \mathrm{~Hz}, \mathrm{H}_{2}-17$), $4.69(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz}, \mathrm{H}-14 \beta), 6.76(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-19) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m/z (\%): 448 ([M + Na] ${ }^{+}, 100$); HR-ESI-MS: $m / z 488.2612[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{NNa}, 488.2619$).

3.14 Compound 26

This compound was prepared from 25 in quantitative yield by a similar procedure as
described for the synthesis of $\mathbf{1 7}$ and $\mathbf{1 8}$. The only difference being that an old $\mathrm{HIO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was used this time that appeared to be a liquid. Compound 26: a white amorphous powder ($11 \mathrm{mg}, 100 \%$), mp $\quad 88-90^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}+5.7 \quad(c=2.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr) $\nu_{\text {max }}: 2938,1771$, $1741,1608,1514,1443,1257,1100 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $3.19,3.30,3.30$ (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}$), $3.63\left(3 \mathrm{H}, \mathrm{s}, 17-\mathrm{COOCH}_{3}\right), 4.71(1 \mathrm{H}, \mathrm{d}$, $J=2.6 \mathrm{~Hz}, \mathrm{H}-6 \beta), 4.75(1 \mathrm{H}, \mathrm{t}, J=4.0 \mathrm{~Hz}$, $\mathrm{H}-14 \beta) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m/z (\%): $503\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, 100), $465\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 25\right)$; HR-ESI-MS: $\mathrm{m} / \mathrm{z} \quad 503.2264 \quad[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{9} \mathrm{Na}, 503.2252$).

3.15 Compound 27

Compound 26 ($69 \mathrm{mg}, 0.14 \mathrm{mmol}$) was dissolved in anhydrous GDE (2 ml) and added $\mathrm{NaBH}_{4}(83 \mathrm{mg}, 0.65 \mathrm{mmol})$, and the solution was stirred at $50^{\circ} \mathrm{C}$ for 5 h . After the removal of the solvent, the residue was diluted with water $(5 \mathrm{ml})$, the mixture was extracted with ethyl acetate $(5 \mathrm{ml} \times 3)$, the extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the organic solvent was removed in vacuo to afford 27 (a white amorphous powder, $49 \mathrm{mg}, 80 \%), \mathrm{mp} 195-196^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 3.31,3.32,3.32$ (each 3 H , s, $3 \times \mathrm{OMe}), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.98$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \beta), 4.80(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$, $\mathrm{H}-6 \beta), 5.15(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m/z (\%): 439 $\left(\mathrm{M}^{+}+\mathrm{H}, \quad 100\right) ; \quad$ HR-ESI-MS: m / z $439.5266[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{8}$, 439.5261).

3.16 Compound 28

To a solution of $\mathbf{2 6}(69 \mathrm{mg}, 0.14 \mathrm{mmol})$ in anhydrous THF (2 ml) was added LiAlH_{4} ($8 \mathrm{mg}, 0.21 \mathrm{mmol}$), and the solution was stirred at room temperature for 10 h prior to being quenched with water $(0.5 \mathrm{ml})$. The mixture was diluted with $20 \% \mathrm{NH}_{4} \mathrm{Cl}$
solution (5 ml) and extracted with ethyl acetate $(5 \mathrm{ml} \times 3)$, and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified over column chromatography (silica gel H , 1.5 g) eluted with cyclohexane-acetone (5:1) to afford 28 as a white amorphous powder ($29 \mathrm{mg}, 51 \%$), mp $202-203{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 3.29,3.31,3.35$ (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}), 3.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14 \beta)$, $5.01(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{H}-6 \beta), 5.11(1 \mathrm{H}$, d, $J=8.6 \mathrm{~Hz}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR spectral data, see Table 2; ESI-MS m/z (\%): $449\left([\mathrm{M}+\mathrm{K}]^{+}, 100\right)$; HR-ESI-MS: $m / z 449.6057[\mathrm{M}+\mathrm{K}]^{+}$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~K}, 449.6061$).

Acknowledgement

We are grateful to the National Natural Science Foundation of China (No. 30873147) for the financial support of this research.

References

[1] M.C. Wani, H.I. Taylor, M.E. Wall, P. Coggon, and A.T. Mcphail, J. Am. Chem. Soc. 93, 2325 (1971).
[2] F.P. Wang and Q.H. Chen, in The Alkaloids: Chemistry and Biology, edited by G.A. Cordell (Elsevier, New York, 2010), Vol. 69, pp. 1-577.
[3] C.L. Zou, L. Cai, H. Ji, G.B. Xie, F.P. Wang, X.X. Jian, L. Song, X.Y. Liu, D.L. Chen, and Q.H. Chen, Tetrahedron 64, 7594 (2008).
[4] Q.H. Chen and F.P. Wang, J. Asian Nat. Prod. Res. 5, 43 (2003).
[5] F.P. Wang, J.Z. Fan, X.X. Jian, and B.G. Li, Chin. Chem. Lett. 10, 379 (1999).
[6] Q.H. Chen, L. Xu, and F.P. Wang, Tetrahedron 58, 9431 (2002).
[7] Q.H. Chen, L. Xu, and F.P. Wang, Chin. Chem. Lett. 14, 147 (2003).
[8] X.L. Shen, Q.H. Chen, and F.P. Wang, J. Asian Nat. Prod. Res. 11, 97 (2009).
[9] F.W. Baehelor, R.F.C. Brown, and G. Buchi, Tetrahedron Lett. 1(31), 1 (1960).
[10] L. Kürti and B. Czakó, Strategic Applications of Named Reactions in Organic Synthesis (Elsevier, New York, 2005), pp. 308-309.
[11] B.A. Trost, D.E. Patterson, and E.J. Hembre, Chem. Eur. J. 7, 3768 (2001).

[^0]: *Corresponding author. Email: wfp@scu.edu.cn

